Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks
نویسندگان
چکیده
It is known that when hyperopic or myopic defocus is imposed on chick eyes by spectacle lenses, they rapidly compensate, becoming myopic or hyperopic respectively, by altering the depth of their vitreous chamber. Changes in two components--ocular length and choroidal thickness--underlie this rapid compensation. With monocular lens treatment, hyperopic defocus imposed by negative lenses resulted in substantially increased ocular elongation and a slight thinning of the choroid, both changes resulting in myopia; myopic defocus imposed by positive lenses resulted a dramatic increase in choroidal thickness, which pushed the retina forward toward the image plane, and a slight decrease in ocular elongation, both changes resulting in hyperopia. The refractive error after 5 days of lens wear correlated well with vitreous chamber depth, which reflected the changes in both choroidal thickness and ocular length. The degree of compensation for lenses was not affected by whether the fellow eye was covered or open. Both form-deprivation myopia and lens-induced myopia declined with age in parallel, but wearing a -15 D lens produced more myopia than did form deprivation. The spectacle lenses affected the refractive error not only of the lens-wearing eye, but also, to a much lesser degree, of the untreated fellow eye. At lens removal refractive errors were opposite in sign to the lense worn, and the subsequent changes in choroidal thickness and ocular length were also opposite to those that occurred when the lenses were in place. In this situation as well, effects of the spectacle lenses on the fellow eyes were observed. Eyes with no functional afferent connection to the brain because of either prior optic nerve section or intraocular tetrodotoxin injections showed compensatory changes to imposed defocus, but these were limited to compensation for imposed myopic defocus, at least for the eyes with optic nerve section. In addition, optic nerve section, but not tetrodotoxin treatment, moved the set-point of the visual compensatory mechanism toward hyperopia. Optic nerve section prevents myopia in response to negative lenses but not to diffusers, suggesting that compensation for hyperopia requires the central nervous system.
منابع مشابه
Severe astigmatic blur does not interfere with spectacle lens compensation.
PURPOSE Whether either natural emmetropization or compensation for imposed spectacle lenses requires the visual system to distinguish myopic from hyperopic blur is controversial. Some have argued that the visual system need only respond to the magnitude of the blur. This study was undertaken to test whether adding large amounts of astigmatic image blur would cause myopia and interfere with comp...
متن کاملCompensation for spectacle lenses involves changes in proteoglycan synthesis in both the sclera and choroid.
PURPOSE It has been demonstrated that chick eye growth compensates for defocus imposed by spectacle lenses: the eye elongates in response to hyperopic defocus imposed by negative lenses and slows its elongation in response to myopic defocus imposed by positive lenses. We ask whether the synthesis of scleral extracellular matrix, specifically glycosaminoglycans, changes in parallel with the chan...
متن کاملTemporal constraints on lens compensation in chicks
If the effective focal length of a growing eye is modified by spectacle lenses, the eye compensates by altering its growth, thereby keeping images in focus, a process we presume is similar to normal emmetropization. Using chicks, we have investigated how much visual exposure the eye needs to exhibit the two principal components of ocular compensation: altered rate of elongation (a scleral mecha...
متن کاملTemporal properties of compensation for positive and negative spectacle lenses in chicks.
PURPOSE Chicks' eyes rapidly compensate for defocus imposed by spectacle lenses by changing their rate of elongation and their choroidal thickness. Compensation may involve internal emmetropization signals that rise and become saturated during episodes of lens wear and decline between episodes. The time constants of these signals were measured indirectly by measuring the magnitude of lens compe...
متن کاملOpposite effects of glucagon and insulin on compensation for spectacle lenses in chicks.
PURPOSE Chick eyes compensate for the defocus imposed by positive or negative spectacle lenses. Glucagon may signal the sign of defocus. Do insulin (or IGF-1) and glucagon act oppositely in controlling eye growth, as they do in metabolic pathways and in control of retinal neurogenesis? METHODS Chicks, wearing lenses or diffusers or neither over both eyes, were injected with glucagon, a glucag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Vision Research
دوره 35 شماره
صفحات -
تاریخ انتشار 1995